2023年 CIMC"西门子杯"中国智能制造挑战赛

智能制造工程设计与应用类赛项:离散行业运控控制方向

全国总决赛 样题

一、 竞赛对象介绍

1. 对象描述

决赛上机比赛时,使用物料卷绕对象作为控制对象。物料卷绕对象主要组件及其构成如下图所示:

图 1-1 多功能运动控制实训平台主要组成部分

从设备正面看左边为 A 辊,右边为 B 辊,从缠有物料的 A 辊开始物料带先经过无动力导轮、张力传感器,旋转编码器辊,加紧辊,无动力导轮到 B 辊结束。

2. 主要组件规格参数

物料卷绕对象主要组成部分及规格参数可参考下面表格中的内容:

序号	部件名称/参数名称	部件规格/参数	数量
1	A 辊	最大直径 = 140mm	1
		最小直径 = 76mm	
2	B 辊	最大直径 = 140mm	1
		最小直径 = 76mm	
3	张力传感器	测量范围: ON - 150N	1
		输出电压: OVDC - 10VDC	
4	增量型旋转编码器(单极性)	分辨率 = 1024PPR	1
5	旋转编码器辊	直径 = 50mm	1
6	伺服电机	额定转速 = 6000RPM	2
7	减速箱	减速比 = 50:1	2

表 1-1 物料卷绕对象主要组成部分及规格参数

3. 网络拓扑结构与信号输入接入位置

图 1-2 PROFINET 网络拓扑结构

S7-1512C PLC 与 S120 的网络拓扑为 CPU:X1.P1-s120:X150.P2 张力传感器输入信号连接至电控箱内模拟信号模块的输入通道 0。 旋转编码器输入信号连接至电控箱内高速计数器的第1路。

二、 比赛说明及比赛任务

- 1. 比赛说明
 - 参赛队伍应按照任务描述进行相关参数设置或程序编制。
 - 比赛任务中所提到的开关,均为人机交互面板上安装的开关。
 - 本赛项评分过程将会模拟实际工程项目验收过程。在评分过程中,参赛队伍不可使用调试计算机 对驱动器进行任何操作,裁判也不会帮助参赛队伍将其工程项目下载至驱动器内。评分时,参赛 队伍可通过使用人机交互面板对任务进行演示操作,也可通过开关对 CPU 运行状态进行操作。
 - 参赛队伍在比赛结束后,应将评分所用的工程项目(包括整个 TIA 博途工程 STEP7 wincc 驱动或 starter 工程)以"队伍编号+参赛日期"的格式为文件名进行另存,例如: ABCD_20210816,不得 以其他格式为文件名保存文件。
 - 参赛队伍应提交所保存的工程项目文件,日后审核及仲裁时,将以此文件作为评判依据。
 - 在任务演示过程中,当驱动器产生故障报警时,参赛队伍不可通过调试计算机对故障进行确认, 但可以通过开关 DIO 或触摸屏"故障确认"按钮进行故障确认。待驱动器恢复正常后,可继续进行 任务演示。如通过开关 DIO 或触摸屏无法对驱动器故障报警进行确认时,并且经认定该情况由参赛 队伍的工程项目中的缺陷引起,则停止该参赛队伍的评分。该参赛队伍的比赛成绩为已完成评分 项的总分。
 - 由于竞赛设备设有安全保护装置,当保护装置被触发时,驱动器将会断电。参赛队伍应充分考虑 到此种情况发生的可能性。在评分过程中,如果出现此种情况,要求参赛队伍在设备恢复供电时, 在不重新下载工程项目的前提下,仍能够保证评分可以继续进行。如因保护装置被触发导致评分 无法继续进行,不论保护装置由谁触发,均停止该参赛队伍的评分。该参赛队伍的比赛成绩为已 完成评分项的总分。
 - 在任务演示过程中,如有卷绕物料断裂的情况发生,则停止该参赛队伍的评分。该参赛队伍的比
 赛成绩为已完成评分项的总分。
- 2. 评分说明
 - 任务演示过程中,如果满足相应的演示步骤要求,则获得该步骤所对应的分数。不满足相应的演示步骤要求,则该步骤不得分。
 - 决赛控制任务总分为100分。
 - 当出现同分队伍时,则按张力控制环节分数进行高低排名;如果张力控制环节得分相同,则按速
 度控制环节分数进行高低排名;如果张力控制环节与速度控制环节两项得分均相同,则比较参赛

队伍完成调试所用时间,用时较短的队伍的排名高于用时较长的队伍。

3. 比赛任务

3.1 任务说明

参赛队伍在进行决赛时,须使用决赛比赛设备,对其上物料进行卷绕控制。要求在整个物料卷绕过程 中,根据任务要求,保持物料张力和运行速度的恒定。同时在人机交互面板上的触摸屏内,根据任务要求, 实现相关功能。

3.2 任务描述

- 实现缠绕系统在物料线速度±15 m/min 之间无断带。
- 触摸屏包含缠绕系统的 A 辊 B 辊电机的手动启停按钮、转速设定、转速实际、缠绕系统自动运行 启停按钮、收放卷方向显示、电机转速等功能。
- 在触摸屏内显示卷绕物料的实际张力值和设定张力值,并以趋势图形式显示。
- 在触摸屏内显示卷绕物料的实际速度和设定速度,并以趋势图形式显示。
- 在触摸屏内显示收卷和放卷直径, 并以趋势图形式显示
- 保护功能:张力过大、卷径过小报警、最大卷绕速度、最大定长卷绕值
- 操作界面必须包含示例中的组态内容

上位机界面示例

CIMC		当前时钟		
张力过大排 最大定长者 最大卷绕远	警值:	N 卷径过小打 mm n/min	段警值 :	mm
	卷绕控制	实时曲线	故障报警	参数配置

CIMC		当前时钟		
速度设定: 实际速度: A启停	A轴电机 : rp : rp A正转 A反转	m 速度设 m 实际速	B轴电机 定: [] [] [] [] [] [] [] [] [] [] [] [] []	l rpm 了 B反转
点动控制	卷绕控制	实时曲线	故障报警	参数配置

CIMC	卷绕控制			当前时钟	
张力设定值 速度设定值 A放-B收	:N :m/m A收-B放急停	实际张力 nin 实际速度 A轴实际卷 B轴实际卷	J: 夏: 注径: 注径:	N m/min mm mm	
A放-B收 A收-B放					
定长卷绕设定值: mm 定长卷绕启动 其它参数配置可 自行定义					
点动控制	卷绕控制	实时曲线	故障报警	参数配置	

CIMC		当前时钟		
	9 10:58:24	10:58:49	10:59:14	80 60 40 -20 -10: 59: 39
2000/12/		2000/12/31 只 至 至 连 接 值	2000/12/31 【 日期/时间	2000/12/31 +) ()+
点动控制	卷绕运行	实时曲线	故障报警	参数配置

CIMC			故障报警		当前时钟
	时间	日期	文本		
点动控制	卷	绕运行	实时曲线	故障报警	参数配置

3.3 评分细则

序号	评分项	分值	得分	说明
1	分为点动控制、参数配置、卷绕运行、实时曲线、故	1		
1	障报警 5 个主要页面并有相应的内容			
	点动界面,设定转速 500rpm,单击"A 启停", A 辊电			
	机使能,按下"A正转"A 辊电机以 500rpm 的速度顺			
2	时针旋转。抬起"A正转"A 辊电机停止旋转。按下"A	E		可正转2分,可儿反转2分,
2	反转"A 辊电机以 500rpm 的速度逆时针旋转,将收卷	0		实际转速正确2分。
	电机的实际转速以 rpm 为单位在触摸屏内显示, 抬起			
	"A 反转"A 辊电机停止旋转。			
	点动界面,设定转速 500rpm,单击"B 启停", B 辊电			
	机使能,按下"B 正转"B 辊电机以 500rpm 的速度顺			
	时针旋转。抬起"B正转"B 辊电机停止旋转。按下"B			可正转2分,可儿反转2分,
3	反转"B 辊电机以 500rpm 的速度逆时针旋转,将收卷	6	分	实际转速正确2分。
	电机的实际转速以 rpm 为单位在触摸屏内显示,抬起			
	"B反转"B辊电机停止旋转。			
	触摸屏显示物料卷绕的实际张力测量值,显示范围		分	
4	0-150N。在触摸屏内设置物料卷绕张力设定值输入功	4		
	能,保留小数点后两位。			
	触摸屏显示物料卷绕的实际运行速度测量值,显示范			
-	围 0-20m/min。在触摸屏内设置物料卷绕运行速度设定			设定值窗口2分,实际值窗
5	值输入功能,以 m/min 为单位在触摸屏内显示,保留	4	分	口2分。
	小数点后两位。			
	将 A 辊与 B 辊的实际卷绕直径,以 mm 为单位在触摸屏			
6	内分别显示,保留小数点后两位。	2	分	A、B 辊分别 1 分。
7	卷绕控制界面:单击"A放-B收"按钮,卷绕系统按			按可正向卷绕1分,再按下
	照设定的张力与速度,自动运行。再次单击"A 放-B	_	分	停止1分,方向切换后,能
	收"按钮,卷绕系统自动停止。单击"A 收-B 放"按	5		启动1分,能停止1分。方
	钮,卷绕系统按照设定的张力与速度,自动启动。再			向正确1分并显示。

	次单击"A收-B放"按钮,卷绕系统自动停止。			
8	在此趋势图中,显示物料卷绕的实际速度与设定速度的变化趋势。速度显示范围±15 m/min	6	分	有趋势图 2 分,有设定值 2分,有实际值 2 分。速度显示范围±15 m/min
9	在触摸屏内创建1个画面。在该画面内放置1个趋势 图。在此趋势图中,显示物料卷绕的实际张力与设定 张力的变化趋势。张力值显示范围 0-150N	6	分	有趋势图 2 分,有设定值 2 分,有实际值 2 分。张力值 显示范围 0-150N
10	卷绕系统自动运行达到稳定状态后,实际物料张力与 设定物料张力偏差范围应保持在 ±20N 。达到稳定状态 所需时间不应超过 20s。物料张力设定值由裁判任意指 定。稳态下修改设定值取多个张力数值进行检测。	15	分	
11	卷绕系统自动运行达到稳定状态后,实际物料运行速 度与设定物料运行速度偏差范围应保持在±1m/min。 达到稳定状态所需时间不应超过20s。物料运行速度设 定值由裁判任意指定。	15	分	
12	切换方向后,卷绕系统自动运行达到稳定状态后,实 际物料张力与设定物料张力偏差范围应保持在 ±20N 。 达到稳定状态所需时间不应超过20s。物料张力设定值 由裁判任意指定。稳态下修改设定值取多个张力数值 进行检测。	15	分	
13	切换方向后,卷绕系统自动运行达到稳定状态后,实际物料运行速度与设定物料运行速度偏差范围应保持在±1m/min。达到稳定状态所需时间不应超过20s。物料运行速度设定值由裁判任意指定。	15	分	